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Kurzfassung

OpenJDK ist die offizielle Implementierung der Java Plattform und daher sehr populär,
sowie weltweit in Verwendung. ARMv8 64 bit execution mode, genannt aarch64, ist eine
im Jahr 2013 eingeführte Architektur, die momentan immer populärer wird. Die ARM
Architektur ist besonders im Bereich der eingebetteten Systeme sehr stark verbreitet und
es gibt einen Trend, diese Systeme auch im Serverbereich einzusetzen. In dieser Arbeit
wird ein Überblick über OpenJDK8 für ARMv8 gegeben und Methoden zur Messung und
Analyse der Performance vorgestellt. Des weiteren werden Ansätze gezeigt, mit denen
der generierte Code optimiert werden kann, was an einem konkreten Beispiel illustriert
wird, das die Performance bei gewissen Benchmarks um 15.2% steigert. Die Evaluierung
der jeweiligen Performance wird duch den Vergleich der Ergebnisse des SPECjbb2005-
Benchmarks durchgefürt. Zum Schluss werden die Vorteile dieser Optimierung aufgezeigt
und zukünftige Forschung diskutiert.
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Abstract

OpenJDK is the official implementation of the Java Platform and therefore very popular
and frequently used. ARMv8 is an architecture introduced in 2013, which is constantly
gaining popularity, notably the 64 bit execution mode is called aarch64. The ARM
architecture is very popular in the field of embedded systems but there are also imple-
mentations targeted to server applications. In this work, an overview of OpenJDK8 for
ARMv8 is given and methods to measure and analyze the performance are explained.
Furthermore, ways of optimizing the generated code are shown and are illustrated on a
concrete example, which increases the performance up to 15.2% on certain benchmarks.
The evaluation of the respective performance is done by comparing the results of the
SPECjbb2005 benchmark. Finally the advantages of this optimization and future work
are discussed.
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CHAPTER 1
Introduction

1.1 Motivation
The Advanced RISC Machine (ARM) v8 in the 64 bit execution mode, called "aarch64",
is an architecture introduced in 2013. Aarch32 - the 32 bit execution mode of ARMv8 -
as well as older ARM versions like ARMv7 are widely spread but aarch64 is constantly
gaining popularity and replacing older hardware. It is the most frequently used architec-
ture in the field of embedded systems and also the vast majority of todays smarthpones
and tablets are using the ARM technology. Java is one of the most popular program-
ming languages and it runs on many platforms. According to the "RedMonk-Index
2015", which is a global index for comparing the usage of programming languages, Java
is ranked as language number 1 [O’G15]. The "TIOBE-Index" is another worldwide
ranking index for the popularity of programming languages. Java was ranked number
one in august 2013 and is ranked number two in march 2015, behind C [McM13], [Com15].

OpenJDK is the official free implementation of the Java platform and also the most
commonly used Open Source Java implementation, available for almost any Java sup-
porting platform (eg. Linux, Solaris, Windows Client, Windows Server, Mac OS X,
Firefox, Chrome, Safari, etc.). It is written in C++ and Java and is distributed under
the GNU General Public License (GPL) by Oracle, which is the main contributor. Oracle
announced in 2008 that OpenJDK will be the official replacement for the non-free Java
Development Kit (JDK).

When speaking about Java technology there are basically three components:
The programming language Java to write programs, the JDK to build programs and the
Java Virtual Machine (JVM), which is a standardized software platform, is needed to
execute Java programs.
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The need of an implementation, which reduces execution times, as well as memory and
energy consumption and therefore costs, is obvious. These two factors are important
performance metrics which need to be considered when speaking about optimizations.
A version for aarch64 exists but it is not yet able to compete with the one for common
x86 architectures when comparing systems with the same number of cores and the
same clockspeed with Java benchmarks like SPECjbb2005 [Cor05] or DaCapo [Pro09].
Therefore, this work aims to optimize the OpenJDK for aarch64 to gain execution speed
and reduce memory consumption, which causes a reduction of energy consumption as
well.

1.2 Problem statement
Program code, written in a programming language needs a compiler or interpreter (or
a combination of both) to be executed on a computer. A compiler translates one lan-
guage (program code) into another one (machine readable instructions or "binary code").
Optimized program code still depends on a well optimized compiler, because the final
application will only perform as well, as the compiler generated binary code can be
executed. As a logical consequence a well optimized compiler speeds up almost any
application and / or reduces the application’s memory consumption.

The direct impact of compilers on the code performance, necessitates the science of
"compiler construction". Compilers are platform dependent and so they need to deal with
strengths and weaknesses of the underlaying system. Most modern compilers use different
stages of optimization which can be separated into "machine dependent" and "machine
independent". The independent part uses a so called Intermediate Representation (IR) -
which allows to perform general and generic optimizations. The platform dependent part
needs to know the exact machine model to be able to select the best register allocation,
to know which instructions are cheap and which are expensive and a lot more. As an
example loop unrolling and dead code elimination are machine independent optimizations,
while vectorization depends on the available registers of the respective architecture. This
work will only focus on the "machine dependent" part of OpenJDK optimizations for
ARMv8 64 bit architecture.

1.3 Aim of the work
To determine how well a compiler performs on a specific platform, benchmarks can
be used for a comparison. Intentionally these benchmarks are built to compare two
systems, or two processors with each other. Depending on the benchmark, the results
only express how fast the benchmark was executed, which can also include network tests,
memory tests, harddrive speed, etc., not how well the used compiler or Java Virtual
Machine is working. These benchmarks try to simulate some real-world-problems, as well
as some special cases, which are intended to find weaknesses and corner cases in the system.
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By comparing results of benchmark runs of the same system, using different compilers, one
can see which one performs the best. For example one run uses OpenJDK7 and the other
one uses OpenJDK8. Now the results show the difference between both implementations.
The primary benchmark used in this work is the "SPECjbb2005" [Cor05]. SPEC stands
for the Standard Performance Evaluation Corporation, which was founded in 1988 and is
now a non-profit organization. The aim of this work is to show ways to get better scores
at the very common benchmark SPECjbb2005 using aarch64 as platform together with
OpenJDK8.

1.4 Structure of the work
This thesis is divided into four chapters. The first chapter gives an overview of the whole
work. Chapter 2 presents related work, while in chapter 3 the applied methods and a
more detailed overview of the analysis is given and in the end the final results of the
optimizations are shown. Conclusion, discussion and also future work are presented in
chapter 4.

1.5 Methodological approach
This work will use a methodology which consist of these steps:

• Benchmarking
At first some data for a comparison is required to be able to determine the
difference between the OpenJDK with and without the new optimizations. Therefore
SPECjbb2005 [Cor05] and the DaCapo [Pro09] benchmark will be used to evaluate
the performance.

• Assembly code review
In this step the quality of the generated code is judged. To be able to decide which
optimization is possible for the current implementation the generated assembly
code itself needs to be reviewed manually. Methods which performed poorly in the
benchmarks are the primary subject of this analysis.

• Machine model and compiler rules improvements
The machine model is used to describe the underlaying hardware, while compiler
rules define the behaviour of the compiler and therefore also influence when to emit
which code. In this step the machine model is improved by adapting the pipeline
model more accurately to the real hardware. In addition new compiler rules are
introduced to make use of yet unsupported instructions, as well as existing rules are
improved. These so called matching-rules, which are explained in detail in section
3.6.1, define which assembly code is emitted by matching on specific patterns of
the parsed Java code. For example a more optimized rule emits only two instead of
three instructions for the same task.
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• Optimization evaluation and documentation of results
Finally the work of the previous steps needs to be evaluated. This is done by
comparing the specific benchmarks against the original results. In addition the
results are displayed visually by plotting a chart to easily see the changes in
performance.
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CHAPTER 2
Related work

In this chapter, related work about parameter finding and optimization, instruction
selection, tree matching and Java synchronization is presented.
Finding the optimal combination of parameters is a NP-hard problem, which is relevant
for this thesis in the aspect of selecting the optimal command line options for the execu-
tion of SPECjbb2005 with OpenJDK8.

In their paper about rapidly selecting good compiler optimizations Cavazos et al. show
that by using performance counters in combination with machine learning strategies the
finding of optimal compiler options can be performed automatically [ABT]. Traditional
approaches can be very expensive, because the used search space consists of all possible
combinations of compiler options. The used dataset contains of 500 transformation
sequences, which are randomly processed and afterwards the performance is evaluated.
An important advantage of the introduced algorithm is that it can be generalized and
then applied to new programs, which were not yet available at the time of the evaluation.
By comparing the results of SPEC benchmark runs with -Ofast and the compiler
options generated by their method, Cavazos et al. measured a speedup of 10%.
Another interesting approach is realized by Haneda et al., who are using a statistical
model to reduce the search space significantly [HKW05]. The presented algorithm is
capable of finding a combination of compiler flags not only for a single program but
for a collection of applications, like the SPECint95, which is used for the evaluation.
The results show that all -O flags of gcc perform worse, than the statistically generated
compiler options.

In the paper of Triantafyllis et al. another method is introduced, which reduces the
search space [TVV+03]. This is done by limiting the use of heuristics, while exploring
compiler options, combined with a compiler tuning phase. The innovative approach in
their work is, that the predictive heuristic calculates the quality of the generated options
a posteriori and not, like traditionally implemented, a priori. In addition the iterative
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compilation method enables Triantafyllis et al. to gain accuracy towards non-iterative
algorithms which cannot handle unpredictable optimizations and complex architectures.

Agakov et al. present another algorithm which uses an iterative approach, trying to
reduce costs by minimizing the number of iterations [ABC+06]. The expensive part of
iterative compiler optimization algorithms is the evaluation of the program, which needs
to be performed after each iteration. A combination of machine learning and predictive
modeling can be used to detect areas of the search space, which have the highest potential
for optimizations. The algorithm of Agakov et al. learns with an off-line training set and
stores the gathered information into independent Markov models. Experiments show
that there is a measurable speedup of selecting compiler options, due to the reduced
number of iterations.
This algorithm is relevant for this thesis, because the costs of one benchmark run are
relatively high (about 3 minutes) and the number of relevant compiler parameters are
large (20 - 30).

Kohavi et al. present a learning algorithm to select parameters for the optimal perfor-
mance by minimizing the estimated error [KJ95]. Their algorithm uses a dataset as
training data and is implemented using a wrapper method, assuming that the task can
be reduced to a discrete function optimization problem. Using the training set as input,
the search is performed by best-first search in combination with cross validation. In the
next step the parameters are evaluated and then the information about the estimated
error of each parameter combination is calculated. The final selection of parameters is
then tuned with the specific induction algorithm and the according dataset.
When applying the algorithm to 33 standardized datasets from the UCI repository
of machine learning databases, the result is that at a confidence level of 95%, the al-
gorithm improves six domains of C4.5 while having no negative influence on the remainder.

One topic of this thesis is instruction selection, which is the stage of the compilers backend
where, based on the tree-based IR, the respective instructions are selected, which is often
combined with register allocation.
In the paper of Fraser, Henry and Proebsting the BURG program is introduced, which is
a quick tree parser using a bottom-up rewrite system [FHP92]. With BURG it is possible
to use a tree grammar, which is extended by a cost value per node, to generate C-code
that finds an optimal parse in the given language in O(n). The result is an optimal
instruction selection, which can be used in code generation.
In OpenJDK8’s Hotspot, BURG is not used directly, but a program which uses an
extended version of a similar algorithm.

Aho et al. introduced the tree-manipulation language twig, which uses a top-down match-
ing algorithm to generate code [AGT89]. Twig is able to discover the minimum costs of
a given tree automatically and therefore generating an optimal instruction selection by
using dynamic programming. Because of this ability there are no constraints on the order
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of the occurring patterns in the matching tree. Common subexpression elimination, as
well as algebraic simplification are not performed during the parse, but they are subjects
of future work.

One optimization described in this thesis deals with Java’s synchronization, where the
performance is increased by removing unnecessary lock and release instructions. Doing
some research, one can find out, that the synchronization implementation of Java has
still potential of further optimization.
According to Bogda et al., some of the synchronization operations are unnecessary, like
the case when a synchronized object is only accessible by a single thread [BH99]. In this
scenario a concurrent access is never taking place and therefore all locking and releasing
operations on the given object can be omitted. Using two benchmarks as metric, they
measured performance improvements of 36% and 20%.
In a similar way, Ruf and Erik perform an analysis of statically compiled code and are
able to remove 100% of the synchronization operations performed in single-threaded
applications [Ruf00]. In addition they show, that with a small overhead in compile time,
they can remove redundant locking of objects in concurrent programs. For this method,
alias analysis and thread closure strategies are used in a context-sensitive way.
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CHAPTER 3
Method

3.1 OpenJDK internals
This sections gives an overview about the structure of OpenJDK, as well as a deeper look
into the used syntax to describe the machine model and matching rules.

3.1.1 Structure

The internal directory structure is as follows:

• root - contains infrastructure files as well as various scripts

• corba - Common Object Request Broker Architecture (CORBA) is used to ex-
change object messages

• hotspot - JVM

• jaxp - Java API for XML Processing (JAXP) is an API to parse, validate, generate
and transform XML

• jaxws - Java API for XML Web Services (JAX-WS)

• jdk - contains the required class libraries

• langtools - javac compiler

• nashorn - JavaScript Engine

All optimizations presented in this work concern files from the hotspot directory. Hotspot
is the JVM, which supports just-in-time compilation (JIT) and adaptive optimization.

The structure of Hotspot is the following:
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• agent - serviceability agent

• test - contains the testing suite

• src

– share - contains shared code like vm and tools
– cpu - CPU specific code
∗ aarch64 - the code relevant for this thesis
∗ ppc
∗ sparc
∗ x86
∗ zero

– os - OS specific code
∗ aix
∗ bsd
∗ linux
∗ posix
∗ solaris
∗ windows

– os\_cpu - contains OS and CPU specific code like linux\_x86, windows\_x86,
etc.

HotSpot consists of two compilers: c1 and c2.
While c1 is intended to compile code quickly without sophisticated optimizations, c2
generates optimized code and therefore is slower.
The internal profiler decides when and which methods needs to be compiled. If one
method is called frequently, it is very likely that it gets compiled.
Usually HotSpot will first use c1 to generate binary code, which is then observed by the
profiler if it would be worth compiling it again with the more expensive c2 compiler.

3.1.2 Architecture Description (AD) file - machine model

To describe the underlaying hardware, HotSpot uses a so called "Architecture description
file" for each architecture. In this file the available registers, encoding classes, pipeline
model, cost model and matching rules are defined.

According to the comments in hotspot/src/cpu/aarch64/vm/aarch64.ad "encoding
classes are parameterized macros used by Machine Instruction Nodes in order to generate
the bit encoding of the instruction". This means that these classes are collections of
C-macros which generate the respective instruction in binary form.
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The pipeline model describes the machine’s pipeline-stages and associated resources.
This information is used to select and schedule instructions such that an (almost) optimal
chain of instructions can be generated, by inspecting dependencies and latencies of
sequential instructions. The aim is to avoid waiting for results and executing independent
tasks in the meantime. The model consists of resources, stages and pipeline classes.
Resources represent the functional units which are available, while a stage represents one
clock cycle.
Pipeline classes are the most comprehensive part of the pipeline model, because each
instruction belongs to one pipeline class. An example of a pipeline class can be found in
table 3.1.
In line 1 the name pipe_IX is defined. Line 3 indicates that this class corresponds to a
single instruction, while line 4 defines the latency of the used instruction. In line 5 and 6
the uses resources in the different stages are defined - the syntax is resource : stage.
In this example line 5 indicates that DEC, which represents the resource for the decoder
unit, is needed in C0, which stands for the first cycle.

Pipeline class

1 pipe_class pipe_IX()
2 %{
3 single_instruction;
4 fixed_latency(2);
5 DEC : C0;
6 IX : C1;
7 %}

Table 3.1: Example of a pipeline class.

The cost model helps the compiler to decide which instruction to select if they are
semantically identical.
In HotSpot the cost model is implemented as a simple cost function which has to be
defined for each instruction. The value needs to be defined inside the respective matching
rule, and looks like this: ins_cost(n);, where n is an integer.

About 90% of the whole AD-file consists of matching rules.
An example of such a rule can be found in table 3.2. These rules consist of a match
element and an obligatory encoding. In addition a rule can be associated with costs
(cost model) and a pipeline class. Further a format string can be inserted, which is
displayed only when debugging. The match-function takes a binary tree as argument,
which describes a part of the compiler generated abstract syntax-tree.
If the compiler matches a rule while analyzing the actual tree, it compares if there are
one or more matches. In the case of multiple matches, the rule with the lowest costs will
be selected.
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In the example the rule is called addP_reg_reg, which stands for the add-instruction
with two registers as parameters. The match-function is called in line 2 and matches
any (part of a) tree which consists of Set node which has a iRegPNoSp left child and
a AddP node as right child. The AddP node has to have again a left child of type
iRegP, which stands for "integer-register-pointer", and a right child of type iRegL,
"integer-register-long".

Set is a generic data type used in HotSpot to indicate a set of nodes, while AddP
indicates an addition of pointers. The types of the variables used in the rule can be found
in line number 1, where the variables are declared.
Types and nodes are defined in hotspot/src/share in C++.

Line 4 calls the cost function and assigns the rule a value of two. In line 5 a format string
is added, which is only used for debugging purpose. This string is displayed when using
a debugging version of OpenJDK when disassembling.
The obligatory ins_encode is used in line number 7, where a simple add instruction is
emitted with three operands. The first operand is the destination register followed by
source register one and two.
This instruction adds src2 to src1 and stores the result in dst. In line 13 the corre-
sponding pipeline class is assigned, which is in this case the same class like listed in table
3.1 and described earlier.

Matching rule

1 instruct addP_reg_reg(iRegPNoSp dst, iRegP src1, iRegL src2) %{
2 match(Set dst (AddP src1 src2));
3
4 ins_cost(2);
5 format %{ "add $dst, $src1, $src2\t# ptr" %}
6
7 ins_encode %{
8 __ add(as_Register($dst$$reg),
9 as_Register($src1$$reg),
10 as_Register($src2$$reg));
11 %}
12
13 ins_pipe(pipe_IX);
14 %}

Table 3.2: Example of a matching rule of a simple pointer addition.
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3.2 Overview
1. Setup of the working environment

At first the whole working environment needs to be set up. Therefore the latest
version of OpenJDK8 for aarch64 is required and has to be compiled. This can be
done either natively, which means that the code is directly compiled on the target
platform, or cross, where the code is compiled on another platform with a compiler
which generates code for the target system.
Usually it is easier to build natively if the compiler and the needed libraries are
available for the used operating system. In this step all required dependencies, like
header-files and libraries are collected and installed. Further the benchmarks for
the evaluation are deployed on the target system.
As a last step the OpenJDK8 is compiled in a release and in a debug version. The
release version is the standard version of the OpenJDK and is intended to be used
in production, while the debug version allows to gather more detailed information
about the codegeneration, runtime behavior, instruction selection, etc. This version
offers more possibilities to analyze but is therefore slightly slower and so it’s not
recommended to use it on productive servers, but only for development.

2. Running the benchmarks
The benchmarks used for this work are primary SPECjbb2005 [Cor05] and as a
second DaCapo [Pro09]. Both benchmarks are executed on the aarch64 platform
under such conditions, that the result can be reproduced easily. To compensate
fluctuations which may occur during the runs both benchmarks need to run multiple
times. Further the x86 architecture will be used for benchmarking. This is done to
be able to match differences with the results of aarch64 and to find weaknesses in
the current OpenJDK implementation.
The assumption is, that OpenJDK for x86 is already better optimized, because it
is used a lot more than the one for ARMv8.
Another important aspect is to record profiling information during the runs to be
able to conclude which parts of the benchmarks perform better and which worse.
This is important, because the results of a benchmark usually, and in this case
too, do not tell anything detailed about performance bottlenecks. Benchmarks
are intended to be a metric to compare hardware / systems / software and most
benchmarks just generate one single score which represents the overall performance.
Eg. SPECjbb2005 just provides one value per "level", where level n is a run with n
threads in use. DaCapo supplies more values because it consists of many smaller
benchmarks, but still the amount of scores is relatively small (<10). Due to the fact
that the result of a benchmark are only a few figures, further profiling information
is needed to be able to compare aarch64 and x86 in detail. During the runs the
profiler collects data about which method is executed how often, how much CPU
time is used, memory consumption, heap allocation and can even dump the whole
heap. In this work the two built-in profilers Xprof and Hprof of Java are used.
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These two profilers can be activated with the command line options -Xprof and
-agentlib:hprof.

3. Evaluation of the benchmarks
As a first step the results of the runs of the original, unmodified OpenJDK on
aarch64 needs to be stored. The next step is to calculate the average of the results
to have one diagnostically conclusive value. The most complex part of this task
is to evaluate the information gathered by the profilers. The extraction of the
information is done in the following steps:

Per benchmark:

a) Run the benchmark n times.
b) Extract the execution time ti,method of each method.
c) Accumulate the values of each method, summethod =

∑n
i=1 ti,method.

d) Divide the sum of respective value by the total amount of execution time to get
a percentage of the execution time for each method , avgmethod = summethod

n .

Per method:

a) Calculate the average profile avgmethod,x86 for each method on x86.
b) Calculate the average profile avgmethod,aarch64 for each method on aarch64.
c) Normalize the data to be able to compare the profiles.

This is done by calculating the relative execution time to be able to exclude
differences in clock speed and other architectural influence factors.
The absolute execution time is the consumed CPU time of all methods during
one profiling session, which is usually one benchmark run.
Assume there are m methods, then tabs =

∑m
i=1 ti,method .

d) Plot a bar chart per relevant method (using a proper threshold for relevance).
For example methods which occur only once in the benchmark and do only
consume very little CPU time will not be displayed. This threshold needs to
be adapted for every benchmark separately.
For example experiments showed that a threshold of 1% CPU time is a good
value for SPECjbb2005 running on the system used in this thesis, which is
described in more detail in section 3.3.

With this information a conclusion about bottlenecks and weaknesses is possible,
because a direct comparison of two implementations of OpenJDK is given.
It is also necessary to calculate this information, because after the optimization a
more detailed comparison of the results can be performed.

4. Analysis of suspicious code
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If a method is, for example, executed only 10% on x86 and on aarch64 it took the
CPU 35% of the total execution time, this is suspicious and possibly a good entry
point for further investigation. In the next step the benchmark is executed again,
but with the option to print out the generated assembly code. This code is the
subject of further analysis.
By manually checking the quality of the assembly, situations in which the compiler
did not generate the optimal code, can be found. If the found pattern occurs in
a hot loop, which is a code fragment which is executed very often in a loop, or in
another frequently called method, this means that the optimization of it would
significantly influence the results. Another tool to inspect the code generation is
JITWatch, which is a "Log analyser and visualiser for the HotSpot JIT compiler"
[Gro15]. It allows to analyze logfiles in a convenient way, which may be really large
(>150 MiB), print call graphs, split-view of Java vs. assembly and so on.

5. Optimization in the OpenJDK
The optimizations will be done in the following places:

• Better mapping of the machine-description model to the architecture.
• Rewriting of existing matching-rules for the compiler.
• Introduction of new rules for the compiler, e.g. because of newly available
instructions.

6. Evaluation of the implemented optimization
In this step the performance is measured again to evaluate whether the newly
introduced optimizations really improve the generated code, using the same metrics
as in step 3.

3.3 Setup of working environment
This sections introduces the required tools and dependencies to be able to build the
OpenJDK, run the benchmarks and to analyse the generated assembly.

3.3.1 Build OpenJDK

To be able to build the OpenJDK natively on ARMv8 64 bit the following requirements
needs to be fulfilled:

• ARMv8 64 bit execution mode hardware.
The hardware used for this thesis is an APM(R) X-Gene1 ARMv8 CPU @ 2.40GHz
with 8 cores and 16 GB RAM.

• Supported operating system version.
The used version of this thesis is Ubuntu 14.10.
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• The latest version of the OpenJDK8 for aarch64.
This version is available in the official mercurial repository which can be found at
hg.openjdk.java.net. The version used in this thesis is based on the mercurial tag
jdk8u45-b13.

• A C-compiler, like gcc.
In this work a non-standard gcc, version 4.8, is used which is optimized for the
aarch64 architecture.

• Dependencies for OpenJDK, like headers and libraries including alsa, freetype, cups,
and xrender.

The compilation of the OpenJDK8 needs to be done in two ways: in the server-release
and the server-slowdebug version. The debug version is needed to be able to better
understand why which code is generated and for further assembly code analysis. The
release version is used for benchmarking.

3.3.2 Benchmarks

The next step is to setup the benchmarks:

• Get the benchmarks
For this thesis the SPECjbb2005 [Cor05] and DaCapo [Pro09] benchmark will be
used. The respective files can be found at the website of the vendor (see references).

• Installation
In the respective files one can find a install script which does all the needed work.
No manual work is required in this step.

• Parametrization
Command line options have a huge influence on the results and therefore they need
to be examined and adopted carefully. In addition the self-built Java binary needs
to be used to run the benchmarks, which can be done by setting the Java classpath.
To find out the best combination of options a lot of runs (> 100) are needed to
compare the results.
This is still not the optimal configuration because there exists a huge amount of
combinations, but it is a solution which is at least better than the standard settings.
"Huge amount" means that there are about 900 different flags, where about 170
flags need a signed integer and about 130 an unsigned integer as parameter, while
the rest of the flags can either be enabled or disabled. A signed integer has values
from −2.147.483.648 to 2.147.483.647, while an unsigned integer has a range from
0 to 4.294.967.295.
This would mean there are about (2600 − 1) ∗ (4.294.967.296300 − 1) ∼ 3.2 ∗ 103070

different combinations of flags, for which the optimal combination cannot be found
in appropriate time by trying out all combinations, considering that one run takes
about 3 minutes to evaluate.

15

http://hg.openjdk.java.net/aarch64-port/jdk8/


3.3.3 Analysis tools

Logfiles may be huge (> 150 MiB) and so it can be really frustrating to examine these
files per hand. To improve the readability and to be able to find the needed information
faster analysis tools are the key to success. In this thesis the following tools are used:

• JITWatch [Gro15]
With the help of this tool the behavior of the Just-In-Time (JIT) compiler of Java
can be examined. JITWatch therefore parses the generated logfiles of the hotspot
compiler. Some of the features listed in the JITWatch wiki:

– Browse class trees and view which methods were JIT compiled, when JIT
compilation occurred, and information about the compilation.

– Mount your source, jars, and class trees to jump to the source, bytecode, and
assembly for a method.

– Plot JIT compilations over time and visualise when a method was JIT compiled.
– View toplists of the largest native methods, methods with most bytecodes,

longest compilation times, etc.
– Open sourced under the Simplified BSD license.

• IdealGraphVisualizer (IGV) [OoL07]
During the compiling phases the OpenJDK generates an XML-file which contains
information about the internal IR. IGV parses this file and graphically displays
the abstract intermediate-tree in the respective state of the code generation. More
information about this tool can be found in the master thesis Visualization of
program dependence graphs of T. Würthinger who demonstrated the program in
short at the Intl. Conf. on Compiler Construction [WWM08].

• vim & grep and other command line tools
Still a lot of work - probably even the major part - needs to be done manually.
Most of the time tools like vim, grep and find are used to search occurring
patterns and to modify them.

3.4 Running the benchmarks
By executing the benchmarks, information about the performance is gathered. By running
the same benchmark with different compiler versions on the same machine on the same
platform, the results can be used as metric to compare the versions. This information is
crucial because it is a good indicator to see if the newly introduced optimizations are
really improving the performance. Of course one benchmark cannot prove a performance
increase for all possible situations, but at least it shows that in some cases the program
executes faster.
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In this thesis the main focus is on SPECjbb2005 because of its wide international distri-
bution and popularity. The parameters of the benchmark, or to be more precise, of the
Java call of the benchmark, needs to be adopted. By reading the official Java manuals
some general optimization flags like -server -XX:+AggressiveOpts can be found.
Increasing the heap and the stack available for the Java Virtual Machine (JVM) can be
done by using these flags: -Xms10g -Xmx10g -Xmn4g -Xss64.
Depending on the chosen settings the benchmark needs between 2 and 30 minutes to exe-
cute on current hardware, which is in this thesis an ARMv8 with 8 cores and 16 GiB RAM.

By doing some testing these options leaded to the best results:
-server -XX:+AggressiveOpts -XX:+UseFastAccessorMethods \
-XX:+OptimizeStringConcat -XX:+UseBiasedLocking \
-XX:+UseParallelGC -XX:ParallelGCThreads=10 -XX:+UseParallelOldGC \
-XX:SurvivorRatio=8 -XX:TargetSurvivorRatio=90 \
-XX:MaxTenuringThreshold=15 -Xms10g -Xmx10g -Xmn4g -Xss64

3.5 Evaluation of the benchmarks
This step is required to prove an increase of performance. In this case the end result of
the benchmark is an indicator for the measured performance which can be found in the
log-file generated during the execution.

To find out which parts of the benchmark or parts of the OpenJDK did perform better
and which worse a profiler can be used. As mentioned earlier, the assumption is, that
OpenJDK for x86 is already better optimized, because it is used a lot more than the one
for the aarch64 architecture. This can be used to compare the results of the profilers
and find out the bottlenecks in the respective implementation, especially weaknesses in
aarch64.

By executing the benchmark twice, the results vary a little (< 5%) because of the
non-constant load of the machine, like cron jobs, ssh connections, network traffic and so
on. These fluctuations need to be compensated, which can be realized by running the
benchmark multiple times and afterwards calculating the average. Experiments showed
that under the given conditions 40 to 50 runs are needed to be able to calculate a solid,
stable and convincing mean. With this figure a robust and stable and informative value
is determined.

3.5.1 Comparison of benchmark results between architectures

To determine the total result, SPECjbb2005 simulates warehouses which are imple-
mented as threads. Each run consists of internally so called levels, which correlate with

17



the amount of threads in so far as in level n there are n threads used. For example in
level 4, there are 4 threads used to simulate the orders and the traffic between warehouses.

Theoretically there is an unlimited number of levels, but usually twice the amount of CPU
cores is the user-selected upper limit, as recommended by SPECjbb2005. SPECjbb2005
requires the user to run at least 8 levels to generate a valid and comparable test result.
Usually the peak of performance is at the level which equals the amount of cores of the
used machine.
Each levels performance is measured and a total result, as well as a result per level is
generated.

The following steps describe the procedure to calculate representative values:

1. Assume i ∈ {1, ..., max(8, |cores|)}, 40 ≤ n ≤ 50.

2. Run the benchmark n times on x86.

3. Run the benchmark n times on aarch64.

4. Extract the result of leveli from the log-file, eg. with a
regular expression "throughput =\s*(\d+).*?bops" (real example of SPECjbb2005
extraction).

5. Calculate the averages for x86.

6. Calculate the averages for aarch64.

7. Compare the average of level {1, ..., i}, eg. on a plot.

An example plot of a comparison between 40 runs on x86 and 40 runs on aarch64 can be
seen in figure 3.1. In addition there is an example of a non-normalized plot, which can
be found in figure 3.2.
The plot in figure 3.2 was generated without performing a normalization (calculating
the average), to show the fluctuation between single runs. For this example only 10 runs
instead of the previously mentioned 40-50 runs are displayed, because else the plot would
get overfilled of lines.
The used x86 system is an Intel(R) Xeon(R) CPU E31220 @ 3.10GHz with 4 cores and
20 GB RAM.
The aarch64 machine has an APM(R) X-Gene1 ARMv8 CPU @ 2.40GHz with 8 cores
and 16 GB RAM.

The peak is at about 210000, reached by the x86 machine which can be explained by the
higher clockspeed, the more complex instruction set of x86 and the better optimization
of OpenJDK for this architecture. As expected the peak is at level 4, which correlates
with the 4 cores of the machine.
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This plot shows that both - the ARMv8 and the x86 - scale well, which means, that until
the level which equals the number of cores, the score increases linearly. Due to the 8
cores of the aarch64 the local peak is in the 8th level.

Figure 3.1: SPECjbb2005 - x86 vs. ARMv8 (normalized)

Another interesting fact is the fluctuation occurring on both machines, but significantly
stronger on x86. The strong variations of the score at aarch64 in level 8 can be explained
because in all other levels there was still at least one core available for tasks of the oper-
ating system. In level 8 the benchmark needed the whole CPU time and so, depending
on the load of the OS, context switches lowered the score.
The higher fluctuations on x86 can be explained by mentioning that this machine is a
multi user server which is not dedicated for benchmarking, and so the tasks of other
users influenced the result more. Even the outlier (x86_10.csv) can be interpreted as an
unfavorable time for benchmarking, because the system was used more intense by other
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users.
Still the result is clear and both peaks can be seen clearly.

The much inferior results of the ARMv8 machine in this benchmark can be explained by
two facts:

1. The lower clock speed of 2.4 GHz versus the x86 with 3.1 GHz.

2. The OpenJDK is better optimized for x86 machines.

Figure 3.2: SPECjbb2005 - x86 vs. ARMv8 (without normalization)

3.5.2 Profiling

Profiling data contains information about used CPU time, memory consumption and
the ratio between interpreted and compiled code. This information is crucial because
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the OpenJDK is too large to inspect all aspects at once and so the parts which can be
optimized need to be found and isolated. As mentioned in section 3.2, in this work the
two built-in profilers Xprof and Hprof of Java are used.

The call for Hprof looks like this:
$JAVA -Xrunhprof:depth=10,verbose=n,heap=sites,cpu=samples \
-Xms256m -Xmx256m spec.jbb.JBBmain -propfile SPECjbb.props
where $JAVA is the path of the self-built binary.

• The parameter depth=10 means, that the stack trace depth is 10 which is by
default 4.
As mentioned by A. Schroeter et al, "Software debugging is difficult and often
involves searching through millions of lines of code to identify the cause of a defect
- akin to finding a needle in a haystack. But stack traces can potentially narrow
down the list of candidate files that are likely to contain the defect to speed up
debugging." [SBP10].
Therefore a deep stack trace is a valuable tool for identifying methods which have
a high potential for optimization.

• With verbose=y|n it can be decided whether the profiler does generate verbose
output or not.

• The flag heap= can be called with either all (default) , sites or dump.
With dump the profiles creates huge logfiles because all available information about
every created object is stored.
By using sites not the entire information is printed but only generate as much
output to be able to print the stack trace and a more general statistic of the memory
consumption. More information can be found in the official documentation - A
Heap/CPU Profiling Tool.

• cpu=samples means that the profiler uses sampling threads to periodically check
all running threads and to print the most frequently stack traces.
There is also the option to use cpu=times which would use Byte Code Injection
(BCI) to determine the calls and stack traces of every called method. This would
be more accurate but would also generate much more overhead than samples.

• The other parameters are used for the stack and heap size, while spec.jbb.JBBmain
indicates which program to start.

Xprof does not support any flags and the call for it looks like this:
$JAVA -Xprof Xms256m -Xmx256m spec.jbb.JBBmain -propfile SPECjbb.props

A sample of the generated logfiles of Hprof looks like the outputs which can be found
in table A.1, A.2 and A.3.
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Table A.1 gives information about the heap usage but only the top 20 methods are shown
in this example - Hprof analyzed more than 300 methods in this benchmark. The results
are ranked by the usage percentage and in column 3 the accumulated percentages are
displayed. Further the used bytes and objects can be seen and one very important value
is the name of the used method which can be seen in the last column.

To find out which methods were called, the trace number is given. This number represents
the unique id of the stack trace which is generated by Hprof. With that number the
corresponding stack trace can be identified.
For example 310683, which can be found in the column trace of the first row in table A.1.
As previously mentioned the depth of the trace can be defined with the parameter
depth=n, which was in this example set to n = 10. As a result of this flag, the maximum
amount of displayed methods is 10, which is the case in this example.
A detailed explanation of how to interpret the stack trace id is given in the next paragraph.
Table A.2 gives an overview about the CPU usage. The values are sorted and listed with ac-
cumulated percentages like in table A.1. This samples show that java.lang.Object.<init>
takes the vast majority of the computation time. In addition java.util.Arrays.copyOf
needs also a lot of CPU time, which is explicable because the SPECjbb2005 benchmarks
performs a lot of memory operations which are using arrays for storing the values.
To get a deeper understanding of who uses this method so often, the stack trace gives a lot
of information. In this example the corresponding stack trace id of java.lang.Object.<init>
can be found in the first row of table A.2, which is in this case 312498.
With this information one can look up the id in the log file and gather information about
the caller(s).
In table A.3, the corresponding trace can be found. Here the stack indicates that the
method spec.jbb.TransactionManager.goManual
called spec.jbb.TransactionManager.runTxn, and so on, which ended up in a
call of java.lang.Object.<init>.
This is crucial information because it indicates which methods do use a lot of CPU
time and which not. In this example one can conclude that the optimization of the
initialization procedure of an object would yield the most performance.

A sample output of Xprof can be found in table A.4 and A.5.
Because Xprof samples the runtime stack in periodic intervals, it causes an impact on the
performance. This impact is reduced by waiting considerable time between the samples,
making this profiler suitable for measuring without the loss of much accuracy.
Usually times between 5ms and 20ms are used [Kli14].

Javas HotSpot first interprets the code and after finding very frequently used fragments,
so called "hot spots", it compiles them.
In the so called CompilePolicies of HotSpot, the behavior of when to compile a method
is described. The c2-compiler of HotSpot gets the needed information out of the C++
class StackWalkCompPolicy, which can be found in src/share/vm/runtime.
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The name of this class is based on the algorithm, which walks up the stack as long as the
first method is detected, which does not lead to inlining.
The JVM internal variable CompileThreshold, which is defined in
cpu/aarch64/vm/c2_globals_aarch64.hpp for aarch64, is set to the following
defaults: 10000 for c2 and 1500 for c1. This means that a method needs to be executed
more than 1500 times to get compiled by c1 and after 10000 calls to that method it gets
compiled by c2.
With flags like -Xcomp and -XX:+CompileTheWorld the compilation can be enforced.
Another influence factor, of whether a method gets compiled or not, is the amount of
loop cycles inside a method. If a loop has many iterations, it gets marked to get compiled,
while the amount of iteration is stored in so called backedge-counters separately for each
method.
At this point the two-tier-compilation should be mentioned, which uses c1 in the first
place to compile a method quickly, but with just very basic optimization, and afterwards
- if needed - compile it again with c2 to generate highly optimized code.

In table A.4 the statistics of an sample benchmark run for the interpreted methods are
shown.
The percentage indicates the time spent inside the method relative to the total execution
time. With 2.0% the method spec.jbb.Company.loadItemTable, which is the
most frequently used interpreted method in this example, consumed only as much CPU
time as the 5th frequently used compiled method.
This is not surprising, because if the method would be used more, HotSpot would have
decided to compile it. In conclusion it can be said, that in general interpreted methods
will use less CPU time, than compiled functions. This can also be seen in the total
amount of interpreted methods which is in this case 33.8%.

Table A.5 has an identical structure as table A.4, with the only difference that only
compiled methods are displayed. Obviously spec.jbb.Stock.<init>, which is an
benchmark internal method, consumes the most CPU time. Unfortunately Xprof does
not support stack traces yet, so the information about the caller cannot be concluded.
As explained above, the total number of compiled methods is usually greater than the
number of interpreted ones, which is true in this case. By analyzing the given figures one
can see that about 60% of the total CPU time is used by compiled methods.

3.5.3 Comparison of profiling data

The data gained from profilers like Xprof and Hprof contains information about which
methods are "important". Important means, that they are called very frequently and
consume the major part of the CPU time.
When talking about optimization, these methods are of high interest, because there is
the most potential to gain performance by optimizing them. By taking a closer look at
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the generated assembly, weaknesses and suboptimal code generation can be discovered.

As mentioned above, this thesis compares an x86 and an aarch64 implementation of the
Java OpenJDK to gather information about "where to optimize". Two examples of a
comparison between profiling data are given in figure 3.3 and 3.4.

The algorithm to calculate differences in profiling data (eg. of Hprof) of a given benchmark
is the following:

1. Assume 40 ≤ n ≤ 50,
m = |methods|,
A = {x86 , aarch64}.

2. Run the benchmark with profiling n times on architecture a ∈ A.

3. Extract the result of each occurring methodi,j,a and the total CPU time total_CPUi,a i ∈
{1, ..., n}, j ∈ {1, ..., m}, a ∈ A , eg. with a regular
expression "\s*\d+\s+?(\d+\.\d+)%\s+\d+\.\d+%\s+\d+\s+\d+\s+(.*?)$"
(real example for an Hprof extraction).

4. Calculate the relative CPU usage of each method.
reli,j,a = methodi,j,a

total_CP Ui,a
, i ∈ {1, ..., n}, j ∈ {1, ..., m}, a ∈ A

5. Select all methods which occurred in all runs on aarch64 and x86.
M = {x|x ∈ {methodi,j,x86 ∩methodi,j,aarch64}},

6. Calculate the averages avgj,a for all methods method ∈M on architecture a ∈ A.
j ∈ {1, ..., |M |}

7. Calculate the relative ratio between the average values of both platforms.
ratioj = | avgj,x86

avgj,aarch64
|

8. Sort the results by their relative ratio ratioj .

9. Plot the data on a bar chart.

In figure 3.3 an example result of this algorithm for a profiling with Xprof is shown.
The methods are sorted by their relative ratio, which is the value in brackets after the
method name.
Obviously java.math.BigDecimal.layoutChars has with 33819.27% the biggest
relative ratio in execution time. This can be explained because this specific method is
almost never called during the benchmark on aarch64.
In contrast to this example,
spec.jbb.CustomerReportTransaction.processTransactionLog is used and
executed with almost identical relative CPU time on both architectures, where the relative
ratio is only 0.03%.
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Methods with a high relative ratio and additionally a high amount of total execution
time are the most interesting. In this figure, this is
spec.jbb.DeliveryTransaction.preprocess, which consumes on both platform
the major part of CPU time and the relative ratio is with 49.32% significant. An im-
portant aspect is, that the method is spending more CPU time on aarch64 than on x64,
which is suspicious, and it can be assumed, that in the generated code, there was a high
optimization potential. Another very interesting method is
spec.jbb.Order.processLines, which has a relative ratio of 195.91% and espe-
cially on x86 it has a very high CPU time consumption. In this case one can analyze both
generated assembly codes and find out where x86 is losing the performance and what are
the strenghts of aarch64 in this situation. With this information similar patterns, which
do not perform as well, can be found and replaced. In addition the knowledge of existing
strenghts helps, when implementing new features.

Figure 3.4 shows the result of a comparison using Hprof. This figure is structured in the
same way as figure 3.3.
In this plot spec.jbb.JBButil.create_random_a_string is the eye catcher, be-
cause it consumes the most CPU time by far, but only on aarch64. The relative ratio is
with 1411.24% significant and the generated assembly code is a good place to start with
the manual review.
Further spec.jbb.JBButil.create_a_string_with_original has the highest
ratio with 1909.64%. This leads to the suspicion, that something regarding the creation
of strings is not implemented optimally.
The assumption is, that by disassembling the discussed methods, the chances are higher
to find code fragments with optimization potential, than when reviewing dissassembly
randomly.
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Figure 3.3: Xprof - x86 vs. ARMv8
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Figure 3.4: Hprof - x86 vs. ARMv8
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3.6 Implementation of optimizations
This sections gives an overview of how to implement an optimization in OpenJDK.
There are two real-world examples - firstly the introduction of a new matching rule
is illustrated and then the analysis and improvement of the existing synchronization
mechanism is shown.

3.6.1 Matching rule

While reviewing the generated assembly code manually, the pattern displayed in table
3.3 can be observed.
The structure is the following: memory address: instruction operands.
In line number 1 an and instruction is used with three operands. In ARM assembly, the
first operand is always the destination operand, which is in this case w2. This means that
the result of the logical and instruction of w2 and #0x7 is stored in w2. Line number
2 shows the cmp instruction, which compares two values, setting the condition flags
accordingly.
There are four flags: C (carry), Z (zero), N (negative) and V (overflow). In this example
the value of w2 is compared to zero, while in line 3 a conditional branch is executed. The
b.eq (branch if equal) instruction reads the condition flags and if Z is set, it jumps to
the given memory address, else the program continues with the next instruction.
There are many options available for the b instruction - a complete list can be found in
table A.7.

This can be summed up like this: "Add 7 to w2, compare it to zero and if it is zero jump
to 0x0000007f8c2968f4."
In the ARM instruction set, there is an ands instruction, which is a bitwise "and" which
additionally sets the condition flags. Obviously this instruction can be used in this case,
like shown in table 3.4.
In line number 1 the bitwise "and" is computed and after that, the N, Z, and C flag is
updated, according to the result. Line 2 executes the conditional branch.
Semantically this is identical and therefore it is ensured that the program is still valid.
The advantage is, that the CPU needs only two instead of three instructions for the same
work to be done, which inceases the performance.

Observed assembly code pattern

1 0x0000007f8c2961b4: and w2, w2, #0x7
2 0x0000007f8c2961b8: cmp w2, #0x0
3 0x0000007f8c2961bc: b.eq 0x0000007f8c2968f4

Table 3.3: Non-ideal assembly code pattern

To transform the old pattern into the new one, OpenJDK uses matching rules, which are
explained in detail in section 3.1.2.
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Optimized assembly code pattern

1 0x0000007f8c2961b4: ands w2, w2, #0x7
2 0x0000007f8c2961b8: b.eq 0x0000007f8c2968f4

Table 3.4: Ideal assembly code pattern

First of all the match function needs to be parametrized correctly. This means that
the corresponding abstract syntax tree needs to be defined, which contains the desired
matching pattern, which is in our case "and,cmp,b".
Figure 3.5 illustrates the desired syntax tree and can be can be interpreted in this way:
The root element If takes two operands - cmp and the result of the CmpI node, which
takes the result of AndI and zero as input, while AndI computes the bitwise "and" of
src1 and src2.

Figure 3.5: Syntax tree of observed pattern

In the next step the types of the operands need to be defined. cmp is a compare operation,
while zero and src2 are integer immediates. src1 is an integer register and for the
branch instruction a label is needed, which is of type label.

The final rule can be found in table 3.5.
Line 1 and 2 describe the operands, while the match function in line 3 takes the previously
described binary syntax tree as input.
Line 4 tells OpenJDK to use lbl as label, which is then used in line 7, to indicate where
to jump at from the conditional branch. In line 5 the costs of two are assigned and line 14
sets the pipeline class to pipe_IX_BU, which means "an arithmetic operation followed
by a branch".
From line 6 to 13 the code to emit is defined, where line 7 the label is set to the correspond-
ing condition. Line 9 to 11 emit the ands instruction and in line 12 the branch is emitted.

Experiments showed, that there is no measurable performance increase when running
SPECjbb2005 with this rule, but a review of the generated assembly shows, that the rule
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emits the code. Apparently this pattern does not occur in a hot loop or in a frequently
called method, so that there is no significant reduction of CPU time. This does not mean,
that the rule does not improve the code quality, because the evaluation is done with only
one benchmark.
In programs, which use this pattern very often, the performance increases, because the
CPU needs to execute only two instead of three instructions.

New matching rule for "and,cmp,b" pattern

1 instruct ands_branch(cmpOp cmp, immI0 zero, iRegIorL2I src1,
2 immILog src2, label lbl) %{
3 match(If cmp (CmpI (AndI src1 src2) zero) );
4 effect(USE lbl);
5 ins_cost(2);
6 ins_encode %{
7 Label* L = $lbl$$label;
8 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode;
9 __ andsw(as_Register($src1$$reg),
10 as_Register($src1$$reg),
11 (unsigned long)($src2$$constant));
12 __ br ((Assembler::Condition)$cmp$$cmpcode, *L);
13 %}
14 ins_pipe(pipe_IX_BU);
15 %}

Table 3.5: Newly introduced matching rule

3.6.2 Data Memory Barrier (DMB)

By analyzing and profiling the performance of OpenJDK like discussed above, the assem-
bly code of synchronization in Java, using the keyword synchronized, looks suspicious
because a lot of dmb instructions are used, which are very costly. This instruction is
expensive because all load and store operations on all CPU cores are forced to be finished
before the program continues with the next instruction after the dmb.
"A dmb ensures that all explicit memory accesses before the dmb instruction complete
before any explicit memory accesses after the DMB instruction start." [Ltd14]
This means that with the help of this instruction the order of the load and store operations
can be forced, and the CPU must not reorder any of those.
These barriers are required in the instruction set of todays CPUs because the so called
out-of-order-execution is a common hardware optimization. When dealing with single
threaded applications the reordering does not have any impact on the correctness, but in
concurrent programs, unpredictable behavior can be caused, when neglecting synchro-
nization.
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An illustrative example for an out-of-order-execution problem can be found in table 3.6.
One would expect the program to print "42" in every case, because if processor #2 sets x
to 42 and afterwards setting f to 1, processor #1 will exit the loop and print the current
value of x, which is then 42. But in the case, the CPU reorders these operations it could
happen, that this program would output "0".
This would happen if f gets updated before x and so the loop would be exited and the
value of x, which is initially 0, printed, before processor #2 sets the value to 42.
This shows the need of the dmb-instruction, which enforces the ordering constraints and
therefore eliminates the unpredictable behavior in this example.

Illustrative example for an out-of-order-execution problem - from wikipedia.org

1 x = f = 0;
2
3 Processor #1:
4 while (f == 0);
5 // Memory fence required here
6 print x;
7
8 Processor #2:
9 x = 42;
10 // Memory fence required here
11 f = 1;

Table 3.6: Out-of-order-execution problem

In Java, the built-in synchronization can be used by declaring something as synchronized.
There are four different kinds of entities which can be defined as synchronized:

1. Instance methods

2. Static methods

3. Code blocks inside instance methods

4. Code blocks inside static methods

This ensures, that all operations done inside this entities can only be executed by exactly
one thread concurrently, which is especially important when reading or writing to shared
resources.

For exclusive access, including the acquiring of a lock for mutual exclusion, there are
dedicated instructions available for ARMv8 systems.
There are Load-Acquire instructions like the LDAXR-family and Store-Release instructions
like the STLXR-family.
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A complete list of exclusive Load-Acquire and exclusive Store-Release instructions can
be found in table A.6.
Table 3.7 shows the pattern, which is typically generated by OpenJDK8 when accessing
to shared resources. To read the shared memory, ldaxr is used, after that some work
with the loaded values is performend and afterwards a stlxr stores the value back to
the memory. The whole procedure is surrounded by two dmb instructions, to enforce the
ordering constraints.

Typical DMB-pattern in OpenJDK’s generated assembly

; load-aqcuire, do work, store-release
dmb
ldaxr
.....
stlxr
dmb

Table 3.7: Typical DMB pattern in OpenJDK8

In the official ARMv8 Architecture Reference Manual a suggestion for how to implement
the acquiring of a lock for mutual exclusion is described, which can be found in table 3.8.
Here the Lock-Acquire is implemented as spinlock, which means the CPU performs busy
waiting until the lock was acquired successfully.
In this example no dmb instructions are used, which leads to the question if they are
redundant when implementing exclusive loads and stores. According to the manual,
chapter B2.7 Memory ordering, Load-Acquire Store-Release, the dmb is not needed in
this case:

page 88:
"There are no additional ordering requirements on loads or stores that appear before
the Load-Acquire."
"There are no additional ordering requirements on loads or stores that appear in
program order after the Store-Release."

page 89:
"The Load-Acquire/Store-Release instructions can remove the requirement to use
the explicit DMB memory barrier instruction."

In HotSpot there are two matching rules, which match on acquiring a lock and on
releasing a lock. Both rules are shown in table 3.9 in their original state.
As one can see in line 8 and 23 the rules emit a dmb instruction, which is in this case
never needed, because the mechanism of acquiring a lock already causes ordered access.
This redundant instruction results in a significant performance decrease, because the
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Acquiring a lock

1 PRFM PSTL1KEEP, [X1] ; preload into cache in unique state
2 Loop
3 LDAXR W5, [X1] ; read lock with acquire
4 CBNZ W5, Loop ; check if 0
5 STXR W5, W0, [X1] ; attempt to store new value
6 CBNZ W5, Loop ; test if store succeeded and retry if not
7 ; loads and stores in the critical region
8 ; can now be performed

Table 3.8: How to acquire a lock in aarch64 assembly.

CPU is forced to complete all store and load operations before and after the dmb, even if
they are not dependent.
Obviously the next step is to stop emitting these two dmb instructions when acquir-
ing and releasing a lock. It is important not to delete the whole matching rule, be-
cause this would result in selecting the default rule for MemBarAcquireLock- and
MemBarReleaseLock-nodes.
By changing line 7-9 and 22-24 to ins_encode();, setting the costs in line 3 and 18 to
0, as well as setting the pipeline class to pipe_class_empty, removes the dmb from
the generated code but keeps the matching. Comparing the results of SPECjbb2005 with
and without this optimization, an performance gain of up to 15.2% can be measured,
which can be seen in figure 3.6.
For this plot the benchmark was executed 40 times in the original state and 40 times
with the optimization, while calculating the respective values like shown in section 3.5.1
but with both times aarch64 as platform.
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original DMB rules in aarch64 AD-file

1 instruct membar_acquire_lock() %{
2 match(MemBarAcquireLock);
3 ins_cost(VOLATILE_REF_COST);
4
5 format %{ "membar_acquire_lock" %}
6
7 ins_encode %{
8 __ membar(Assembler::LoadLoad|Assembler::LoadStore);
9 %}
10
11 ins_pipe(pipe_serial);
12 %}
13
14 ############################################
15
16 instruct membar_release_lock() %{
17 match(MemBarReleaseLock);
18 ins_cost(VOLATILE_REF_COST);
19
20 format %{ "membar_release_lock" %}
21
22 ins_encode %{
23 __ membar(Assembler::LoadStore|Assembler::StoreStore);
24 %}
25
26 ins_pipe(pipe_serial);
27 %}

Table 3.9: original DMB rules in aarch64 AD-file
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Figure 3.6: specjBB2005 - optimized vs. original
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CHAPTER 4
Discussion and conclusion

In this work a methodological approach for analyzing, evaluating, profiling and improving
the performance of OpenJDK8 for ARMv8 systems was presented. The aim was to
improve the performance using the SPECjbb2005 benchmark as metric. In the first step
the internal structure of OpenJDK was presented, which is important to understand
the implementation of the optimizations in detail. Further the setup of the working
environment was explained, followed by how to run the benchmarks.
To be able to compare the results a detailed step-by-step instruction was given, which
was illustrated with examples. Finding weaknesses and bottlenecks was solved by using
the Java built-in profilers Xprof and Hprof. In addition an algorithm to evaluate the
collected information from the profilers was described and applied to real-world data and
shown in various figures.
Concluding it can be said, that analyzing and profiling of OpenJDK8, as well as manual
assembly code review are main aspects of this work, which are obligatory requirements to
be able to identify the parts of this comprehensive software, which have a high potential
for optimizations.
Finally two practical and real-world improvements of OpenJDK8 were presented and
their implementation was illustrated in detail. The optimization of Java’s synchronization
mechanism, which was realized by removing redundant data memory barriers, improved
the performance by up to 15.2% in SPECjbb2005.
While the presented modifications of OpenJDK8 resulted in a gain of performance, there
is still a lot of potential for further improvements - especially in the implementation of
synchronization routines. In future work, a deeper analysis of emitted Lock-Acquire and
Store-Release instructions will be done, because of the assumption, that still non-ideal
synchronization-patterns get emitted. Additionally one of the presented algorithms in
chapter 2 will be implemented and applied to OpenJDK8 and SPECjbb2005 to find a
better combination of command line parameters.
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APPENDIX A
Profiling and instruction tables
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SITES BEGIN (ordered by live bytes) Thu Mar 19 17:31:51 2015
rank self accum bytes objs bytes objs trace name

1 46.37% 46.37% 86400000 1200000 86400000 1200000 310683 char[]
2 15.46% 61.82% 28800000 1200000 28800000 1200000 310682 java.lang.String
3 6.12% 67.94% 11403112 120000 11403112 120000 310679 char[]
4 3.61% 71.55% 6720000 120000 6720000 120000 310680 java.lang.String[]
5 3.09% 74.64% 5760000 120000 5760000 120000 310675 spec.jbb.Stock
6 2.23% 76.87% 4159872 57776 15833376 219908 311328 spec.jbb.Orderline
7 2.06% 78.93% 3840000 120000 4480000 140000 307215 java.util.HashMap$Node
8 1.55% 80.48% 2880000 120000 2880000 120000 310678 java.lang.String
9 1.46% 81.94% 2717736 3309 2957728 3600 310840 char[]

10 1.24% 83.18% 2311040 57776 8796320 219908 311332 java.math.BigDecimal
11 1.02% 84.20% 1907808 119238 1907808 119238 310688 java.lang.Integer
12 1.02% 85.23% 1904296 20000 1904296 20000 310618 char[]
13 0.77% 85.99% 1427712 8112 93012480 528480 311384 char[]
14 0.74% 86.74% 1386624 57776 5277792 219908 311333 java.lang.String
15 0.61% 87.35% 1136056 20000 1136056 20000 310609 char[]
16 0.55% 87.90% 1030656 5856 64111872 364272 312067 char[]
17 0.42% 88.32% 786528 6 1573152 66 310685 java.util.HashMap$Node[]
18 0.34% 88.66% 640000 20000 640000 20000 310606 spec.jbb.Item
19 0.34% 89.01% 640000 20000 640000 20000 310620 java.util.HashMap$Node
20 0.31% 89.32% 582912 3312 35177472 199872 311318 char[]
...

Table A.1: Profiling - Hprof sites (heap)
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CPU SAMPLES BEGIN (total = 29863) Thu Mar 19 17:31:51 2015
rank self accum count trace method

1 15.82% 15.82% 4725 312498 java.lang.Object.<init>
2 5.84% 21.67% 1745 311384 java.util.Arrays.copyOf
3 5.59% 27.25% 1669 312317 java.lang.Object.<init>
4 4.16% 31.41% 1242 310686 java.lang.Object.<init>
5 4.03% 35.44% 1202 312403 java.lang.Object.<init>
6 3.97% 39.41% 1185 312067 java.util.Arrays.copyOf
7 3.87% 43.27% 1155 310683 java.util.Arrays.copyOf
8 3.86% 47.14% 1153 310681 spec.jbb.JBButil.create_random_a_string
9 2.81% 49.95% 840 312234 java.lang.Object.<init>

10 2.52% 52.47% 754 312450 java.lang.Object.<init>
11 2.52% 54.99% 752 312463 java.lang.Object.<init>
12 2.46% 57.46% 736 312399 java.lang.Object.<init>
13 2.43% 59.89% 727 312315 java.lang.Object.<init>
14 2.38% 62.27% 712 312455 java.lang.Object.<init>
15 2.26% 64.53% 675 312449 java.lang.Object.<init>
16 2.20% 66.74% 658 311318 java.util.Arrays.copyOf
17 1.89% 68.62% 563 312474 java.lang.Object.<init>
18 0.68% 69.30% 203 307221 java.lang.Object.<init>
19 0.64% 69.95% 192 307210 spec.jbb.JBButil.create_random_a_string
20 0.64% 70.59% 192 307212 java.util.Arrays.copyOf
...

Table A.2: Profiling - Hprof CPU samples

TRACE 312498:
java.lang.Object.<init>(Object.java:37)
java.lang.Number.<init>(Number.java:55)
java.lang.Integer.<init>(Integer.java:849)
java.lang.Integer.valueOf(Integer.java:832)
spec.jbb.Warehouse.retrieveStock(<Unknown Source>:Unknown line)
spec.jbb.DeliveryTransaction.preprocess(<Unknown Source>:Unknown line)
spec.jbb.DeliveryHandler.handleDelivery(<Unknown Source>:Unknown line)
spec.jbb.DeliveryTransaction.process(<Unknown Source>:Unknown line)
spec.jbb.TransactionManager.runTxn(<Unknown Source>:Unknown line)
spec.jbb.TransactionManager.goManual(<Unknown Source>:Unknown line)

Table A.3: Profiling - Hprof stack trace
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Interpreted native Method
2.0% 3 0 spec.jbb.Company.loadItemTable
1.3% 2 0 spec.jbb.MapDataStorage.put
1.3% 2 0 spec.jbb.Warehouse.loadStockTable
0.7% 0 1 java.lang.Object.clone
0.7% 1 0 java.util.HashMap.afterNodeAccess
0.7% 0 1 java.io.UnixFileSystem.getBooleanAttributes0
0.7% 0 1 java.io.FileInputStream.open0
0.7% 0 1 java.lang.ClassLoader.findBootstrapClass
0.7% 0 1 java.lang.Class.forName0
0.7% 1 0 java.lang.ClassLoader.defineClass1
0.7% 1 0 java.lang.ref.ReferenceQueue$Lock.<init>
0.7% 1 0 java.nio.charset.CharsetEncoder.maxBytesPerChar
0.7% 1 0 java.lang.Integer.intValue
0.7% 1 0 spec.jbb.TreeMapDataStorage.<init>
0.7% 1 0 java.util.logging.LogRecord.setSourceClassName
0.7% 1 0 java.util.ResourceBundle$BundleReference.<init>
0.7% 1 0 java.util.regex.Matcher.getSubSequence
0.7% 1 0 java.util.TreeMap.get
0.7% 1 0 java.nio.ByteBuffer.array
0.7% 1 0 java.math.MutableBigInteger.isOdd
0.7% 1 0 java.lang.Integer.valueOf
0.7% 1 0 spec.jbb.JBButil.create_random_a_string
0.7% 1 0 spec.jbb.Orderline.validateAndProcess
0.7% 1 0 java.lang.CharacterDataLatin1.toUpperCaseEx
0.7% 1 0 java.lang.String.compareTo

33.8% 45 6 Total interpreted (including elided)

Table A.4: Profiling - Xprof interpreted methods
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Compiled native Method
18.5% 28 0 spec.jbb.Stock.<init>
11.3% 17 0 spec.jbb.Warehouse.loadStockTable
4.0% 6 0 spec.jbb.Item.setUsingRandom
2.6% 2 2 spec.jbb.Stock.initStock
2.0% 3 0 spec.jbb.Orderline.validateAndProcess
1.3% 1 1 java.math.BigDecimal.<init>
1.3% 0 2 sun.security.provider.SHA.implCompress
0.7% 0 1 java.lang.StringBuilder.<init>
0.7% 1 0 spec.jbb.MapDataStorage.put
0.7% 1 0 java.util.HashMap.put
0.7% 0 1 java.util.HashMap.get
0.7% 0 1 spec.jbb.JBButil.random
0.7% 0 1 java.util.HashMap.containsKey
0.7% 0 1 java.math.MutableBigInteger.clear
0.7% 0 1 java.math.BigInteger.trustedStripLeadingZeroInts
0.7% 0 1 spec.jbb.JBButil.create_random_n_string
0.7% 1 0 sun.nio.cs.US_ASCII$Decoder.decode
0.7% 1 0 spec.jbb.JBButil.create_random_a_string
0.7% 0 1 java.lang.String.compareTo
0.7% 0 1 java.math.BigInteger.addOne
0.7% 0 1 java.math.MutableBigInteger.rightShift
0.7% 0 1 spec.jbb.JBButil.create_a_string_with_original
0.7% 1 0 java.math.MutableBigInteger.divide
0.7% 1 0 spec.jbb.Address.setUsingRandom
0.7% 0 1 java.util.HashMap.getNode

58.3% 66 22 Total compiled (including elided)

Table A.5: Profiling - Xprof compiled methods

Exclusive Load-Acquire and Store-Release instructions

1 LDAXR Load-Acquire Exclusive register
2 LDAXRB Load-Acquire Exclusive byte
3 LDAXRH Load-Acquire Exclusive halfword
4 LDAXP Load-Acquire Exclusive pair
5 STLXR Store-Release Exclusive register
6 STLXRB Store-Release Exclusive byte
7 STLXRH Store-Release Exclusive halfword
8 STLXP Store-Release Exclusive pair

Table A.6: Exclusive Load-Acquire and Store-Release instructions
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Suffix Flags Meaning

EQ Z set Equal
NE Z clear Not equal
CS or HS C set Higher or same (unsigned >= )
CC or LO C clear Lower (unsigned < )
MI N set Negative
PL N clear Positive or zero
VS V set Overflow
VC V clear No overflow
HI C set and Z clear Higher (unsigned >)
LS C clear or Z set Lower or same (unsigned <=)
GE N and V the same Signed >=
LT N and V differ Signed <
GT Z clear, N and V the same Signed >
LE Z set, N and V differ Signed <=
AL Any Always. This suffix is normally omitted.

Table A.7: Condition code suffixes - from arm.com
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List of Abbreviations

AD Architecture Description

API Application Programming Interface

ARM Advanced RISC Machine

BCI Byte Code Injection

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

DMB Data Memory Barrier

IGV Ideal Graph Visualizer

IR Intermediate Representation

JAXP Java API for XML Processing

JAX-WS Java Api for XML Web Services

JDK Java Development Kit

JIT Just In Time

JRE Java Runtime Environment

JVM Java Virtual Machine
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